List 5

Derivative calculations

For a function $f(x)$ and a number a, the derivative of \boldsymbol{f} at \boldsymbol{a}, written $f^{\prime}(a)$, is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$ and is calculated as

$$
f^{\prime}(a)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The function $f(x)$ is differentiable at \boldsymbol{a} if $f^{\prime}(a)$ exists and is finite.
104. Calculate $f^{\prime}(5)$ for the function $f(x)=x^{3}$. Hint: See Task $90(\mathrm{~b}) .75$
105. Calculate $f^{\prime}(1)$ for the function $f(x)=\sqrt{x}$. Hint: See Task $50(\mathrm{~b}) \cdot \frac{1}{2}$
106. The graph of a function is shown below. Near $x=1, x=3$, and $x=7$, part of the tangent lines to the graph at those points is shown as a dashed line segment.

(a) List all points where the function is not continuous. $x=5, x=6$
(b) List all points where the function is not differentiable (that is, where the derivative does not exist). $x=4, x=5, x=6, x=7$
107. List all points where $f(x)=\frac{|x|-4}{|x-4|}$ is not differentiable. $x=0$ and $x=4$ The function has a "corner" at $x=0$, so it is continuous there but not differentiable. It has a "jump" at $x=4$, so it is not continuous and also not differentiable there.
The Constant Multiple Rule: If c is a constant then

$$
(c f)^{\prime}=c f^{\prime} \quad(c f(x))^{\prime}=c f^{\prime}(x) \quad \frac{\mathrm{d}}{\mathrm{~d} x}[c f]=c \frac{\mathrm{~d} f}{\mathrm{~d} x} \quad D[c f]=c D[f]
$$

(these are four ways of writing exact the same fact).
The Sum Rule: $\frac{\mathrm{d}}{\mathrm{d} x}[f+g]=\frac{\mathrm{d}}{\mathrm{d} x}[f]+\frac{\mathrm{d}}{\mathrm{d} x}[g]$.
The Power Rule: If p is a constant then $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{p}\right]=p x^{p-1}$.
108. All parts of this task have exactly the same answer! Answer: $14 x^{6}$
(a) Find $f^{\prime}(x)$ for the function $f(x)=2 x^{7}$.
(b) Give f^{\prime} if $f=2 x^{7}$.
(c) Find y^{\prime} for $y=2 x^{7}$.
(d) Compute $\frac{\mathrm{d} f}{\mathrm{~d} x}$ for the function $f(x)=2 x^{7}$.
(e) Compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=2 x^{7}$.
(f) Give the derivative of $2 x^{7}$ with respect to x.
(g) Find the derivative of $2 x^{7}$.
(h) Calculate $\frac{\mathrm{d}}{\mathrm{d} x} 2 x^{7}$.
(i) Calculate $\left(2 x^{7}\right)^{\prime}$.
(j) Calculate $D\left[2 x^{7}\right]$.
(k) Differentiate $2 x^{7}$ with respect to x.
(ℓ) Differentiate $2 x^{7}$.
109. Differentiate $x^{5}+\frac{2}{9} x^{3}+\sqrt{3 x}+\frac{x^{10}}{\sqrt{x}} \cdot 5 x^{4}+\frac{2}{3} x^{2}+\frac{\sqrt{3}}{2 \sqrt{x}}+\frac{19}{2} x^{17 / 2}$
110. Differentiate $(x+\sqrt{x})^{2} \cdot 2 x+3 \sqrt{x}+1$ or $2(x+\sqrt{x})\left(1+\frac{1}{2 \sqrt{x}}\right)$
111. For each of the functions below, can the Power Rule and/or Constant Multiple Rule (along with maybe some algebra) be used to find the derivative? If so, give the derivative.
(a) $2 x^{6}$ Yes: $12 x^{5}$
(b) $2 \sqrt{x}$ Yes: $x^{-1 / 2}$ or $\frac{1}{\sqrt{x}}$
(c) $\sqrt{5 x}$ Yes: $\frac{\sqrt{5}}{2} x^{-1 / 2}$
(d) x^{π} Yes: $\pi x^{\pi-1}$
(e) $x^{\sin x} \mathrm{NO}$
(f) $(\sin x)^{x}$ No
(g) $e^{x} \mathrm{No}!$
(h) $\cos (5 x) \quad \mathrm{No}$
(i) $\sin (5 \cos (x))$ No
(j) $e^{5 \ln (x)}$ Yes: $5 x^{4}$
(k) $\frac{3}{x^{6}}$ Yes: $-18 x^{-7}$
(ℓ) x^{x} No!
(m) $\ln (2+x)$ No
(n) $\ln (2 x)$ No
(o) $\ln \left(2^{x}\right)$ Yes: $\ln (2)$
(p) $\ln \left(x^{2}\right)$ No
112. Is it possible to find the derivative of the following functions using the Power Rule, Constant Multiple Rule, and Sum Rule?
(a) $x+\ln \left(5 e^{x}\right)$ This function equals $2 x+\ln (5)$, so Yes: 2 .
(b) $\frac{2 x}{x+6}$ No
(c) $\frac{x+6}{2 x}$ Yes: $-3 x^{-2}$ or $\frac{-3}{x^{2}}$
(d) $\frac{x+\frac{1}{x}}{\sqrt{x}}$ Yes: $\frac{1}{2} x^{-1 / 2}-\frac{3}{2} x^{-5 / 2}$
113. Give the derivative of each of the following functions.
(a) $x^{7215} 7215 x^{7214}$
(b) $5 x^{100}+9 x 500 x^{99}+9$
(c) $2 x^{3}-6 x^{2}+10 x+16 x^{2}-12 x+10$
(d) $3 \sqrt{x} \frac{3}{2} x^{-1 / 2}$ or $\frac{3}{2 \sqrt{x}}$
(e) $\sqrt[3]{x} \frac{1}{3} x^{-2 / 3}$ or $\frac{1}{3 \sqrt[3]{x^{2}}}$
(f) $\sqrt{x}^{3} \sqrt{\frac{2}{3} x^{-1 / 3}}$ or $\frac{2}{3 \sqrt[3]{x}}$
(g) 310
(h) $x+\frac{1}{x} 1-x^{-2}$ or $1-\frac{1}{x^{2}}$
(i) $\sqrt { x } + \frac { 1 } { \sqrt { x } } \longdiv { \frac { 1 } { 2 } x ^ { - 1 / 2 } + \frac { - 1 } { 2 } x ^ { - 3 / 2 } }$ or $\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{x^{3}}}$
(j) $(3 x+7)^{2} \quad 18 x+42$ or $6(3 x+7)$
114. Is $x^{3}-x^{1 / 3}$ continuous everywhere? Yes Is it differentiable everywhere? No because $\frac{\mathrm{d} y}{\mathrm{~d} x}$ does not exist at $x=0$.
115. If $f(x)=8 x^{4}-x^{2}$, for what values of x does $f(x)=0$? $\frac{-1}{2 \sqrt{2}}, 0, \frac{1}{2 \sqrt{2}}$

For what values of x does $f^{\prime}(x)=0 ? \frac{-1}{4}, 0, \frac{1}{4}$
116. For the function $f(x)=x^{3}$ and $g(x)=2 x^{2}, \ldots$
(a) Calculate the derivative of $f .3 x^{2}$
(b) Calculate the derivative of $g .4 x$
(c) Calculate the derivative of

$$
f(x)+g(x)=x^{3}+2 x^{2} .
$$

$$
3 x^{2}+4 x
$$

(d) Calculate the derivative of

$$
f(x) \cdot g(x)=2 x^{5} .
$$

$$
10 x^{4}
$$

(e) Does $(f+g)^{\prime}=f^{\prime}+g^{\prime}$? In other words, is your answer to (c) the same as adding your answers to (a) and (b)? Yes
(f) Does the derivative of a sum equal the sum of the derivatives? Yes
(g) Does $(f \cdot g)^{\prime}=f^{\prime} \cdot g^{\prime}$? In other words, is your answer to (d) the same as multiplying your answers to (a) and (b)? No!
(h) Does $\frac{\mathrm{d}}{\mathrm{d} x}[f \cdot g]=\frac{\mathrm{d} f}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} g}{\mathrm{~d} x}$? This is exactly the same question as (g). No!
(i) Does the derivative of a product equal the product of the derivatives? No!
117. Which limit expression below gives the derivative of x^{3} at the point $x=2$? (C)
(A) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x}$
(C) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
(B) $\lim _{h \rightarrow 0} \frac{h^{3}-8}{h}$
(D) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-h^{3}}{h}$
118. (a) Find $\left(x^{10}+100 x+1000\right)^{\prime}=10 x^{9}+100$
(b) Find $D[9 x+\sqrt{9 x}]=D\left[9 x+3 x^{1 / 2}\right]=9+\frac{3}{2} x^{1 / 2}$
(c) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+3)^{2}\right]=\frac{\mathrm{d}}{\mathrm{d} x}\left[4 x^{2}+12 x+9\right]=8 x+12$
(d) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\frac{x+12}{2 x} . \quad \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{x+12}{2 x}\right]=\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{2}+\frac{6}{x}\right]=0+\frac{-6}{x^{2}}$
119. For each function below, state whether its derivative can be found using only algebra, the Power Rule, the Constant Multiple Rule, and the Sum Rule. If so, give its derivative.
(a) $4 x^{2}-27 x$ has derivative $8 x-27$.
(b) $4 x^{2}-27$ has derivative $8 x$. Note that $27=27 x^{0}$, so we can use the Power Rule to get $27 \cdot 0 x^{-1}=0$ as its derivative.
(c) $\sqrt{16 x}$ is equal to $4 x^{1 / 2}$ and therefore has derivative $2 x^{-1 / 2}$, or $\frac{2}{\sqrt{x}}$.
(d) $(x+\sqrt{7})^{2}$ is equal to $x^{2}+2 \sqrt{7} x+7$ and therefore has derivative $2 x+2 \sqrt{7}$.
(e) 2^{x+7} is equal to $128 \cdot 2^{x}$, but differentiating this requires another rule.
(f) $\frac{5}{x}$ is equal to $5 x^{-1}$ and therefore has derivative $-5 x^{-2}$, or $\frac{-5}{x^{2}}$.
(g) $\frac{3 x}{6 x+15}$ requires the Quotient Rule (or the Chain and Product Rules together).
(h) $\frac{6 x+15}{3 x}$ is equal to $2+\frac{5}{x}$ and therefore has derivative $\frac{-5}{x^{2}}$.

$$
\begin{aligned}
\text { Individual functions: } & \frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{p}\right]=p x^{p-1}, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left[e^{x}\right]=e^{x}, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}[\ln (x)]=\frac{1}{x}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}[\sin (x)]=\cos (x), \quad \\
\mathrm{d} x & \cos (x)]=-\sin (x) .
\end{aligned}
$$

Sum Rule: $(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad$ Product Rule: $(f \cdot g)^{\prime}=f g^{\prime}+f^{\prime} g$
Chain Rule: $(f(g))^{\prime}=f^{\prime}(g) \cdot g^{\prime} \quad$ Quotient Rule: $(f / g)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
120. Give the derivative of $5 \sin (x)+\frac{2}{3} \cos (x)-x^{3}+9.5 \cos (x)-\frac{2}{3} \cos (x)-3 x^{2}$
121. Using the Product Rule, give the derivative of $5^{x} \cdot \sin (x) .5^{x} \cos (x)+5^{x} \ln (x) \sin (x)$
122. Use the Product Rule (twice) to find the derivative of $x^{6} \cdot \cos (x) \cdot 2^{x}$. $\frac{x^{6} \cos (x) 2^{x} \ln (2)-x^{6} \sin (x) 2^{x}+6 x^{5} \cos (x) 2^{x}}{x^{5} 2^{x}(x \cos (x) \ln (2)-x \sin (x)+6 \cos (x))}$ be simplified to
123. Give the derivative of every function in Task 119.
124. True or false?
(a) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ true
(b) $(f \cdot g)^{\prime}=f^{\prime} \cdot g^{\prime}$ false A correct right-hand side could be parts (c) or (d).
(c) $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ true
(d) $\frac{\mathrm{d}}{\mathrm{d} x}(f g)=f \frac{\mathrm{~d} g}{\mathrm{~d} x}+g \frac{\mathrm{~d} f}{\mathrm{~d} x}$ true
(e) $(f \cdot g)^{\prime}=g^{\prime} f^{\prime}+g f^{\prime}$ false A correct right-hand side could be $g^{\prime} f+g f^{\prime}$ without the extra ' in the first term $g^{\prime} f^{\prime}$.
(f) $(f / g)^{\prime}=g f^{\prime}-f g^{\prime}$ false A correct right-hand side could be $\left(g f^{\prime}-f g^{\prime}\right) / g^{2}$.
125. Find the derivative of $\sin \left(5^{\cos \left(2 x^{3}+8\right)}\right)$.
$\cos \left(5^{\cos \left(2 x^{3}+8\right)}\right) \cdot 5^{\cos \left(2 x^{3}+8\right)} \ln (5) \cdot\left(-\sin \left(2 x^{3}+8\right)\right) \cdot 6 x^{2}$
126. (a) Use the Quotient Rule to differentiate $\frac{\sin (x)}{x^{4}} \cdot \frac{x^{4} \cos (x)-\sin (x)\left(4 x^{3}\right)}{x^{8}}$
(b) Use the Product Rule to differentiate $x^{-4} \sin (x) \cdot x^{-4} \cos (x)+\left(-4 x^{-5}\right) \sin (x)$
(c) Use algebra to compare your answers from parts (a) and (b). they are equal
127. Find the following derivatives (note (p)-(̇̀) require the Chain Rule).
(a) $f^{\prime}(x)$ for $f(x)=x^{9} \sin (x) x^{9} \cos (x)+9 x^{8} \sin (x)$
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{9} \sin (x)\right) x^{9} \cos (x)+9 x^{8} \sin (x)$ (same as (a))
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(10^{x}+\log _{10}(x)\right) \quad 10^{x} \ln (10)+\frac{1}{x \ln (10)}$
(c) $\frac{\mathrm{d}}{\mathrm{d} x}\left(10^{x} \cdot \log _{10}(x)\right)$

$$
10^{x} \ln (x)+\frac{10^{x}}{x \ln (10)}
$$

(ć) $\frac{\mathrm{d}}{\mathrm{d} x}(\sqrt{x} \sin (x)) \frac{\sin (x)}{2 \sqrt{x}}+\sqrt{x} \cos (x)$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{9} e^{x} \sin (x)\right) e^{x} x^{9} \sin (x)+e^{x} x^{9} \cos (x)+9 e^{x} x^{8} \sin (x)$
(e) $\frac{\mathrm{d}}{\mathrm{d} x}\left(4 x^{3}+x \sin x\right) 12 x^{2}+\sin (x)+x \cos (x)$
(e) $\frac{\mathrm{d}}{\mathrm{d} t}\left(4 t^{3}+t \sin t\right) 12 t^{2}+\sin (t)+t \cos (x)$
(f) $\frac{\mathrm{d}}{\mathrm{d} t} \sin (t) \cos (t)(\cos x)^{2}-(\sin x)^{2}=\cos (2 x)$
(g) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{\cos (x)}{5 x^{3}-12} \frac{-\left(5 x^{3}-12\right) \sin (x)-15 x^{2} \cos (x)}{\left(12-5 x^{3}\right)^{2}}$
(h) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{5 x^{3}-12}{\cos (x)}\left(5 x^{3}-12\right) \sec (x) \tan (x)+15 x^{2} \sec (x)$
(i) $\frac{\mathrm{d}}{\mathrm{d} t} \frac{t^{7}+t^{2}}{e^{t}}-e^{-t} t\left(t^{6}-7 t^{5}+t-2\right)$
(j) $\frac{\mathrm{d}}{\mathrm{d} x}(5 x-7)^{2} 50 x-70$
(k) $\frac{\mathrm{d}}{\mathrm{d} t} e^{t} \cos (t) e^{t} \cos (t)-e^{t} \sin (t)$
(l) $\frac{\mathrm{d}}{\mathrm{d} t}\left(t \sin (t)+\frac{e^{t}}{t^{2}+1}\right) \frac{e^{t}(t-1)^{2}}{\left(t^{2}+1\right)^{2}}+\sin (t)+t \cos (t)$
(ł) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{\sin (t)}{t e^{t}} \frac{t \cos (t)-(t+1) \sin (t)}{t^{2} e^{t}}$
(m) $\frac{\mathrm{d}}{\mathrm{d} t} t^{5 / 2} \sin (t) \frac{5}{2} t^{3 / 2} \sin (t)+t^{5 / 2} \cos (t)$
(n) $\frac{\mathrm{d}}{\mathrm{d} x} 2^{15} 0$
(n) $\frac{\mathrm{d}}{\mathrm{d} x} x^{15} 15 x^{14}$
(o) $\frac{\mathrm{d}}{\mathrm{d} u} u^{15} 15 u^{14}$
(ó) $\frac{\mathrm{d}}{\mathrm{d} x} u^{15}$ if u is a constant 0
(p) $\frac{\mathrm{d}}{\mathrm{d} x} u^{15}$ if u is a fn. of $x 15 u^{14} \frac{\mathrm{~d} u}{\mathrm{~d} x}$
(q) $\frac{\mathrm{d}}{\mathrm{d} x}(\cos (x))^{15} 15(\cos x)^{14}(-\sin t)$
(r) $\frac{\mathrm{d}}{\mathrm{d} x} \ln (\cos (x))-\tan (x)$
(s) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{\ln (\cos (x))} \frac{-\tan (x)}{2 \sqrt{\ln (\cos (x))}}$
(ś) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\sqrt{\ln (\cos (x))}} \frac{-\tan (x) e^{\sqrt{\ln (\cos (x))}}}{2 \sqrt{\ln (\cos (x))}}$
(t) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\sqrt{\ln \left(\cos \left(x^{6}\right)\right)}} \frac{-3 x^{5} \tan \left(x^{6}\right) e^{\sqrt{\ln \left(\cos \left(x^{6}\right)\right)}}}{\sqrt{\ln \left(\cos \left(x^{6}\right)\right)}}$
(u) $\frac{\mathrm{d}}{\mathrm{d} t} 5 \sin (2 t+1) 10 \cos (2 t+1)$
(v) $\frac{\mathrm{d}}{\mathrm{d} t} A \sin (\omega t+\phi)$ if A, ω, t are constants $A \omega \cos (\omega t+\phi)$
(w) $\frac{\mathrm{d}}{\mathrm{d} x}\left(7 x^{2}+\sin (x)\right)^{2} 2\left(7 x^{2}+\sin (x)\right)(14 x-\cos (x))$
(x) $\left.\frac{\mathrm{d}}{\mathrm{d} x}\left(\log _{3}(x)\right)^{2}(2 \ln (x))\right) /\left(x \ln (3)^{2}\right)$
(y) $\frac{\mathrm{d}}{\mathrm{d} t} \tan \left(t^{3}+8 t^{2}+2 t+18\right)\left(3 t^{2}+16 t+2\right)\left(\sec \left(t^{3}+8 t^{2}+2 t+18\right)\right)^{2}$
(z) $\left.\frac{\mathrm{d}}{\mathrm{d} x} \cos \left(x^{3} e^{x}\right) 3 x^{2} \cos (9 x)-9 x^{3} \sin (9 x)\right)$
(́́) $\frac{\mathrm{d}}{\mathrm{d} x} x^{3} \cos (9 x) 3 x^{2}(\cos (9 x)-3 x \sin (9 x)) 9$
(i) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x^{3} \cos (x)}{e^{\sin (x)}} x^{2}\left(-e^{-\sin (x)}\right)(x \sin (x)+\cos (x)(x \cos (x)-3))$

